

Presentation objectives:

- Understand the roles and responsibilities of the Rehabilitation Implementation Group (RIG).
- Know who the staff are.
- Review our annual workplan objectives.
- Discuss ways the TAMWG can contribute constructively to RIG projects and priorities.

AEAM Science

RIG Role

The RIG is responsible for implementing the on-the-ground design and construction activities associated with the restoration program. These include:

- 1) Design data collection
- 2) Exploratory drilling and materials testing
- 3) ROW acquisition
- 4) NEPA/CEQA compliance and permits
- 5) Engineering designs
- 6) Awarding construction contracts
- 7) Administering construction
- 8) Public involvement

RIG Staffing:

Ed Solbos, Branch Chief
Brandt Gutermuth, Environmental Specialist
Rich Miller, Civil Engineer
Noelyn Habana, Civil Engineering Technician
Vacant, Grants and Agreements

FY2003 Annual Workplan Objectives

- All bridges and floodplain structures will be able to pass "extremely wet year" ROD flows (11,000 cubic feet per second) by May 2004.
 - Budget constraints will limit construction to 2 bridges in FY03
 - Ortho-rectified aerial photographs required for flood plain analysis will be available by April 2003. Trinity County providing contracting support.
- > The first group of channel restoration projects will be ready for implementation by the end of FY03.
 - Design of the first 16 sites is being pursued by the DWR, Hoopa Tribe, and TRRP Office.
 - Emphasis on below Canyon Creek as a prototype
 - Rush Creek delta
- Short & long term gravel augmentation in concert with the gravel management plan
 - Cable way site
 - Weir site

Historic River Conditions

> Prior to the dams, high flows were relatively common

Peak flows at Lewiston have exceeded 100,000 cfs

> 40,000 cfs about every 10 years

The Flow Regime under the ROD

Water Year Class	Peak Flow (cfs)	Peak Flow Duration (Days)
Critically Dry	1,500	36
Dry	4,500	5
Normal	6,000	5
Wet	8,500	5
Extremely Wet	11,000	5

Requirement

"...Reclamation will take appropriate steps in a timely manner to ensure that affected bridges, houses and outbuildings are structurally improved or relocated or otherwise addressed before implementing peak releases..."

Structure Planning Study

STRUCTURE PLANNING STUDY FOR TREADWELL, POKER BAR, SALT FLAT AND BUCKTAIL BRIDGES

FOR:

THE COUNTY OF TRINITY PLANNING DEPARTMENT &
TRINITY RIVER RESTORATION PROGRAM OF
THE UNITED STATES DEPARTMENT OF THE INTERIOR

PREPARED BY:

3 private and 1 county bridges affected

> Costs of replacement structures built to Federal Highways, AASHTO, and Caltrans standards would exceed \$6M.

Bridge Study Goals

- Evaluate how proposed ROD flows affect each bridge.
 - Subsurface Investigation
 - Scour Studies
 - Load Testing
 - Hydrology Studies
 - Hydraulic Models

Exploratory Drilling

SUBSTRATE SAMPLING

LOAD TESTING

HYDROLOGY STUDY

- IDENTIFY DISCHARGE FROM LEWISTON
 - 1) 11,000 FT³/S RECORD OF DECISION FLOWS (MAY/JUNE)
 - 2) 50 AND 100 YEAR PROBABILISTIC FLOOD FLOWS
 - 3) 13,750 FT³/S MAX CONTROLLABLE RELEASE FROM DAM
- DETERMINE 50/100 YEAR FLOW FROM TRIBUTARIES
- COMBINE LEWISTON DAM RELEASES AND TRIBUTARY INFLOWS AT BRIDGE LOCATIONS

Dam Discharge Plus Tributaries

Flow Description	Flow Event	Salt Flat (cfs)	Bucktail (cfs)	Poker Bar (cfs)	Biggers Road (cfs)
Maximum Unobstructed Flow	Q_{MAX}	7,500	7,800 *	11,750	9,000
Return Period	Q ₅₀	11,700	11,700	18,500	19,100
Peak Flow (Annual with ROD)	Q ₁₀₀	12,900	13,100	23,400	24,700
Maximum Controlled- Flow Release	Q _{MCR}	14,900	15,000	17,000	17,200
Estimated Flow During 1/1/97 Event	Q ₁₉₉₇	11,000	11,000	15,000	15,000
Typical Maximum Flow – July 22 to October 15	Q	450	450	450	450

^{*} Flow at inundation of access road

HOW FLOWS ARE USED IN BRIDGE DESIGN

FLOWS ARE ENTERED INTO
A COMPUTER MODEL THAT
CONTAIN REPRESENTATIVE
CROSS-SECTIONS OF THE
AREA OF INTEREST. FROM THIS
MODEL, WATER ELEVATIONS
BASED ON FLOW RATES ARE
DETERMINED

Flower's continued and violations

E	e	V	a	ti	0	n
		_		77		

Flow Description	Flow Event	Salt Flat (cfs) Low Chord = 1777.6 Top of Deck = 1780.6	Water Surface Elevation (ft)
Maximum Unobstructed Flow	Q _{MAX}	7,750	1777.6
Return Period Peak Flow (Annual with ROD)	Q ₅₀	11,700	1780.0
	Q ₁₀₀	12,900	1780.4
Maximum Controlled- Flow Release	Q _{MCR}	14,900	1781.0
Estimated Flow During 1/1/97 Event	Q ₁₉₉₇	11,000	1779.5
Typical Maximum Flow – July 22 to October 15	Q	450	1770.1

BRIDGE STUDY GOALS

- Evaluate how proposed ROD flows affect each bridge
- Identify concepts to address weaknesses in the ability of the bridge to pass the ROD flows

Alternatives to Address the ROD Releases

- Monitor and Maintain
- Retrofit the existing bridge
- Eliminate existing bridge and develop new access from other side
- Construct a new bridge upstream
- Construct a new bridge downstream

Existing Bridge Profile

 $Q_{50} = \overline{11,700 \text{ cfs}}, Q_{MCR} = 14,900 \text{ cfs}, Q_{MAX} = 7,750 \text{ cfs}$

Salt Flat Proposed Action

Proposed Action Profile

 $Q_{50} = 11,700 \text{ cfs}, Q_{MCR} = 14,900 \text{ cfs}$

- > Weathering steel, maintenance free
- Low superstructure depth, for long spans
- > Blends well with the environment

Cost

Construction Contract	\$ 2,095,000	
Design	\$ 245,000	
Construction Management	\$ 146,000	
Geology and Contracting	\$ 45,000	
Total	\$ 2,531,000	

Funding through Reclamation (\$ 1,600,000) and Trinity County (\$ 931,000)

Schedule

- Draft Environmental Document
 April 2003
- Final Environmental Documents, Permits June 2003
- Construction Contract Award (Salt Flat, Biggers Road)
 - July 2003
- New Bridge Open to Traffic
 - February 2004

Restoration Sites

Hocker Flat Bank Rehabilitation Project

Hocker Flat Schedule

- Draft Environmental Document
 May 2003
- Final Environmental Documents, Permits July 2003
- Construction Contract AwardSeptember 2003
- Construction Complete
 October 2004

Rush Creek Delta Design

Coarse Sediment Supplementation

- Short-Term and Long-Term
- Up to 67,000 yd³ in Extremely Wet Years
- Currently DevelopingGravel ManagementPlan

Spawning gravel adjacent to Trinity River Fish Hatchery

Gravel supplementation during high flows

Mercury Concerns

- Exposure during channel excavations (bridge foundations, delta removal)
- Wasting of riparian berm sediments
- Reuse of excavated channel materials
- Processing or mobilization of tailings
- Safety during construction

TAMWG Participation

- Anytime anywhere based on schedules, the earlier the better.
- The bridges and Hocker Flat are well along, with identified proposed actions
- Rush Creek and hatchery gravel projects are just beginning
- Involvement through individuals or tech teams